

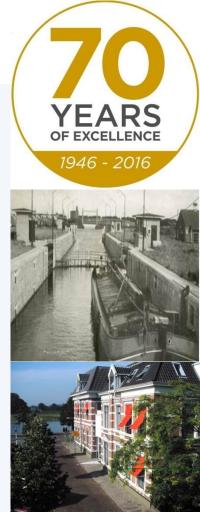
Wastewater Treatment & Re-use

Presented By: Richard Sedafor MSc Engineer/ Deputy Branch Manager (W+B,Ghana) Supported by: dr. ir. Arjen van Nieuwenhuijzen MSc. PhD.

March 23, 2017

Content

- Introduction
- Source & Treatment: characterisation of waste flows search for valuables
- Products : Biogas, Energy, Phosphorus, Nitrate
- Case examples



Brief About Witteveen+Bos

- independent engineering consultants
- found by Mr Bos (37) and Mr Witteveen (54) in 1946
- 4 Business Lines
 - · Deltas, Coasts and Rivers
 - · Infrastructure and Mobility
 - Built Environment and Urban Development
 - Energy, Water and Environment
- milestones 2016:
 - · 1,100 employees Worldwide
 - turnover EUR 140 million (2016)

Global Presence

- Netherlands (Amsterdam, Rotterdam, The Hague, Breda, Heerenveen, <u>Deventer</u>)
- Belgium (Antwerp, Brussels)
- United Kingdom (London)
- Indonesia (Jakarta)
- Kazakhstan (Almaty, Atryrau, Aktau)
- Latvia (Riga)
- Russian Federation (St Petersburg)
- Vietnam (Ho Chi Min)
- Singapore
- UAE (Dubai)
- Ghana (Accra)

6 Witteveen+Bos Sustainable Project Principals based on the 17 UN SDG's

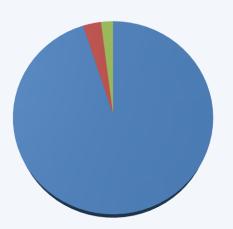
- ✓Nature-inclusive and climate-proof design
- \checkmark Integration: applying the chain approach
- ✓Optimisation of functions
- ✓ Social design, based on social sustainability
- ✓ Participation by stakeholders and users
- ✓ Trias principle for sustainable solutions.

Municipal and industrial application Food, beverage, Steel&Metals, Oil&Gas

Conventional and advanced digestion and sludge treatment

Energy & Resource Factories

System Integrator of Nereda[™]-Technology


Waste2Value

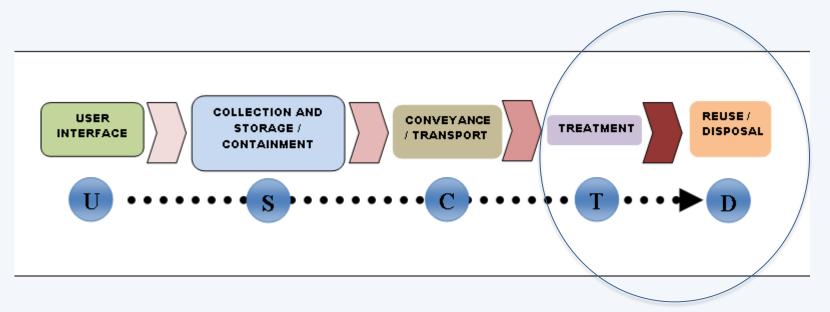
Source & Treatment: characterisation of waste flows – search for valuables

Wastewater Resource in the Accra Region

Sources

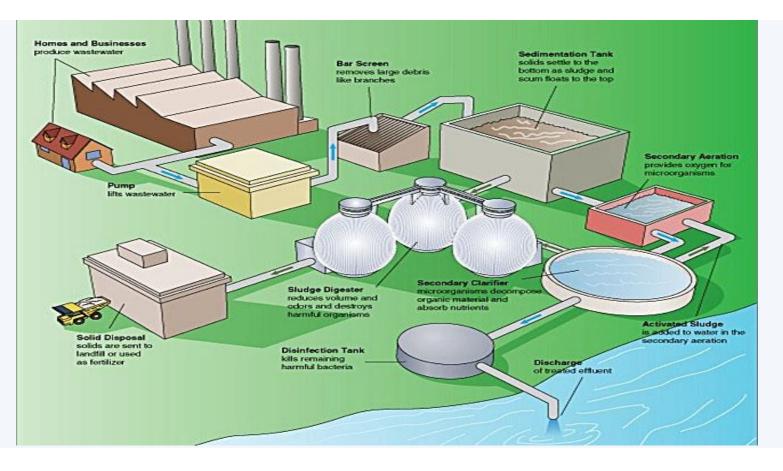
- Septage/Faecal Sludge (95%)
- Sewerage(Tema-3%)
- Sewerage(Accra-2%)

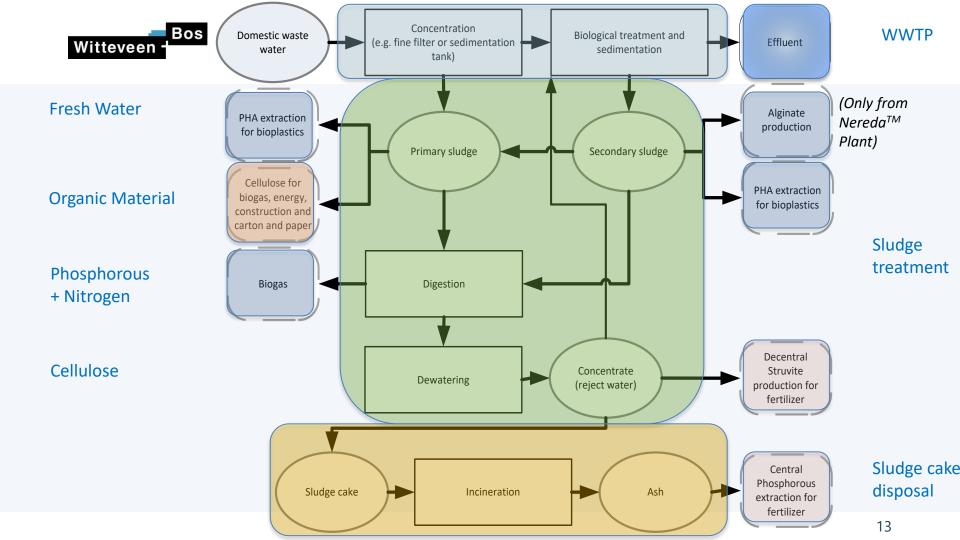
Characteristics of Faecal Sludge/Septage in Accra


• BOD & COD is higher than would be expected

•Industrial waste water mixed with domestic

Parameter	Unit	Literature value IWA	Literature value IWA	Nuguaa Farms (analysis results)	Lavender Hill (analysis results)	Lavender Hill (analysis results)	Design value
		Public toilet	Septage (septic tank)	Public Latrine	Public Latrine	Public Septic	Public faecal sludge
				(3)	(4)	(5)	Average (3), (4), (5)
COD	mg/L	20,000- 50,000	1,200- 10,000	58,570	46,106	9146	37,941
BOD	mg/L	7,600	840-2,600	18,521	16,800	4560	13,294
COD/BOD	-	5 to 1	5 to 1	3,2	2,7	2,0	2.6
TSS	%	3.5 %	3.0 %	1.8 %	1.7 %	1.4 %	1.6 %
TDS	mg/L						
NH4-N / NH3-N	mg/L	2,000- 5,000	1,000	534	535	140	403
NO3-N	mg/L		0.2-2.1	14.8	10.8	10.5	12
PO4-P	mg/L						
total P	mg/L	450	150	21.60	29.10	18.10	22.9




Waste and Waste Water value chain

^{Bos} General treatment overview

Witteveen ·

Digestion of organic waste and sludge

Waste minimisation and max bio-energy production:

- Decrease of final waste production due to organic waste conversion;
- Decrease water content for further handling;
- Sludge stabilisation to prevent uncontrolled decomposing;
- Odour and pathogen reduction for a more hygienic product;
- Generation of power (and heat).

Cost reductions:

- Mostly reduced by decreasing volume of sludge;
- Reduced amount and volume lowers transportation costs;
- Disposal options reduced by controls on land filling and agricultural use.

Several choices of optimizing digestion process

- Affects waste reduction methane generation phase of digestion;
- Mesophilic digestion: 30 40 °C, retention time of 15 25 days. Stable, traditional (inefficient) technology;
- **Thermophilic digestion**: 45 55 °C, retention time of 10 15 days. Requires more control but greater biogas yield;
- Advanced Digestion: **Thermal Pressure Hydrolysis**: Pre-treat sludge at 160°C and high pressure (6-7 bar), up to 40% more biogas, Class A Biosolid production.

Products : Biogas, Energy, Phosphorus, Nitrate

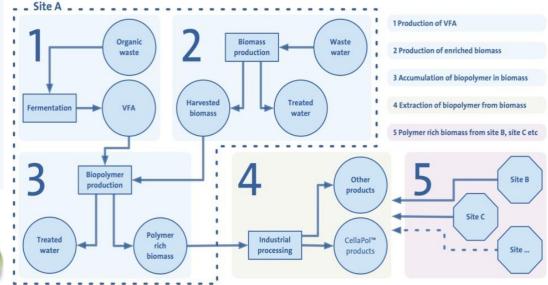
Why Resource Recovery from Waste and Waste Water

Main Drivers: Cost Savings + Sustainability

- ✓ Reducing further (central) treatment (costs)
- ✓ Saving energy (costs)
- ✓ Decrease of final waste residues (costs)
- ✓ Resource recovery (added values and benefit, sustainable)
- ✓ Reduction of green house gas emissions (sustainable)

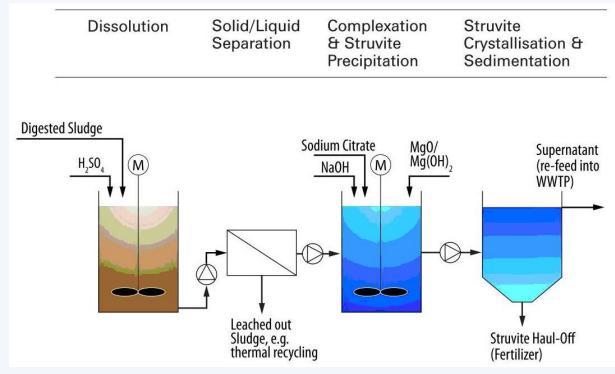
Resource Pinching: Identify your own resource values

- Organic Material (carbon):
 - Convert into:
 - Renewable (bio) gas for electricity production (via digestion, enhanced digestion)
 - > Bio materials, like bio plastics (PHA/PHB), alginate (Granular Sludge), fatty acids
- Nutrients (P, N):
 - Convert into:
 - Bio Fertilizer (struvite)
 - Phosphoric acid
 - > Ammonia sulphate, Ammonia Nitrate, Protein production (nitrogen conversion)

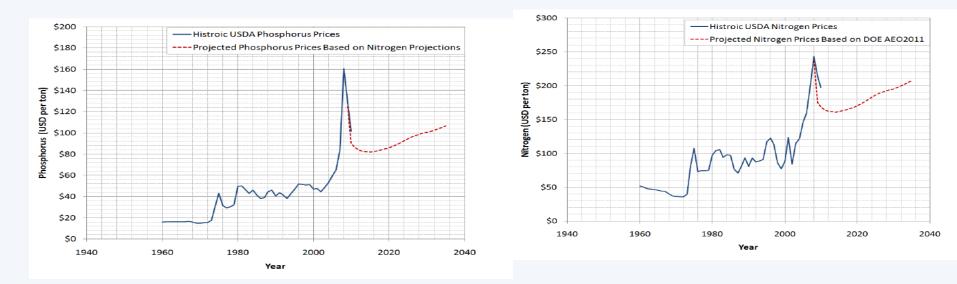


Further up-valuation of organic material: bio-plastic production

PHA from waste

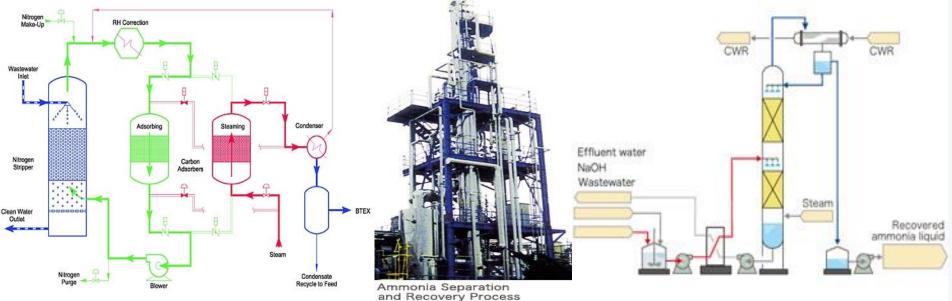

- PolyHydroxyAlkanoaat
- Biological degradable polyester
- Process under development
- High value product

Struvite processes



Struvite installations

Market price developments (Phosphorous)



Nitrogen recovery routes

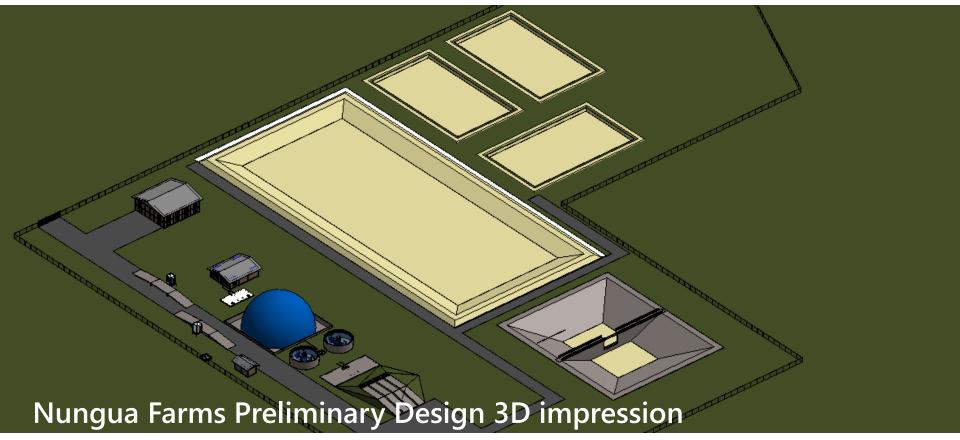
Mainly Ammonia stripping (from NH₄ enriched water from off gas flows)

- Ammonia sulphate (NH₄)₂SO₄ products
- ➤ Ammonia Nitrate NH₄NO₃ products

Selected reference Waste2Value projects of W+B



Energy+Resource Factory Apeldoorn: Energy, P and N



Energy Factory Hengelo: P+N struvite from centrate

Proposed site at Tuba (Ga South)

Thank you

www.witteveenbos.com